Double Blind Study of the Bactericidal Properties of [Nano Silver Solution]

Summary:
In a double-blind study, [Nano Silver Solution] was studied for its effectiveness in killing ten different strains of bacteria and candida, including treatment-resistant strains. The bacterial colonies were exposed to various dilutions of [Nano Silver Solution] via two different tests and the results were conclusive— [Nano Silver Solution] was able to destroy all of the tested bacteria within 120 minutes of contact or less.

How It Worked:
To prepare for this experiment, the ten bacterial and candida strains were mixed with water and incubated for four to six hours. After that, researchers ran two tests—a minimum inhibitory concentration test and a suspension test (candida was only studied in the suspension test). A minimum inhibitory concentration test measures what concentration of a substance (in this case, [Nano Silver Solution]) prevents bacterial growth. A suspension test, on the other hand, measures how long an organism must be in contact with the substance before it is killed. Each experiment was repeated three times.

What Happened:
- [Nano silver solution] was able to prevent growth of all studied bacteria.
- The dilution of [Nano Silver Solution] that was required to inhibit bacterial growth was between 12.5% and 50%.
- All of the studied organisms were killed within 30-120 minutes.

What it Means:
According to researchers, the results of the experiments showed that [Nano Silver Solution] has the ability to inhibit both gram-negative and gram-positive bacteria, regardless of bacterial structure. [Nano silver solution] also showed the ability to kill the studied candida, although it did take a little longer (this difference is likely because of the difference in fungi’s cell wall structure). Researchers also noted that due to the increase in drug resistance for many bacterial pathogens, bactericidal substances like [Nano Silver Solution] may become increasingly necessary for their potential in treating bacterial infections.